Assessment of Photodynamic Destruction of Escherichia coli O157:H7 and Listeria monocytogenes by Using ATP Bioluminescence

Author:

Romanova N. A.12,Brovko L. Y.12,Moore L.2,Pometun E.3,Savitsky A. P.34,Ugarova N. N.3,Griffiths M. W.12

Affiliation:

1. Canadian Research Institute for Food Safety

2. Department of Food Science, University of Guelph, Guelph, Ontario, Canada

3. Faculty of Chemistry, Lomonosov Moscow State University

4. Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

Abstract

ABSTRACT Antimicrobial photodynamic therapy was shown to be effective against a wide range of bacterial cells, as well as for fungi, yeasts, and viruses. It was shown previously that photodestruction of yeast cells treated with photosensitizers resulted in cell destruction and leakage of ATP. Three photosensitizers were used in this study: tetra( N -methyl-4-pyridyl)porphine tetratosylate salt (TMPyP), toluidine blue O (TBO), and methylene blue trihydrate (MB). A microdilution method was used to determine MICs of the photosensitizers against both Escherichia coli O157:H7 and Listeria monocytogenes . To evaluate the effects of photodestruction on E. coli and L. monocytogenes cells, a bioluminescence method for detection of ATP leakage and a colony-forming assay were used. All tested photosensitizers were effective for photodynamic destruction of both bacteria. The effectiveness of photosensitizers (in microgram-per-milliliter equivalents) decreased in the order TBO > MB > TMPyP for both organisms. The MICs were two- to fourfold higher for E. coli O157:H7 than for L. monocytogenes . The primary effects of all of the photosensitizers tested on live bacterial cells were a decrease in intracellular ATP and an increase in extracellular ATP, accompanied by elimination of viable cells from the sample. The time courses of photodestruction and intracellular ATP leakage were different for E. coli and L. monocytogenes . These results show that bioluminescent ATP-metry can be used for investigation of the first stages of bacterial photodestruction.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3