Affiliation:
1. Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Abstract
ABSTRACT
The yeast protein Rbl2p suppresses the deleterious effects of excess β-tubulin as efficiently as does α-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with β-tubulin that does not contain α-tubulin, thus defining a second pool of β-tubulin in the cell. Formation of the complex depends upon the conformation of β-tubulin. Newly synthesized β-tubulin can bind to Rbl2p before it binds to α-tubulin. Rbl2p can also bind β-tubulin from the α/β-tubulin heterodimer, apparently by competing with α-tubulin. The Rbl2p–β-tubulin complex has a half-life of ∼2.5 h and is less stable than the α/β-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing β-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p–β-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献