The ectD Gene, Which Is Involved in the Synthesis of the Compatible Solute Hydroxyectoine, Is Essential for Thermoprotection of the Halophilic Bacterium Chromohalobacter salexigens

Author:

García-Estepa Raúl1,Argandoña Montserrat1,Reina-Bueno Mercedes1,Capote Nieves1,Iglesias-Guerra Fernando2,Nieto Joaquín J.1,Vargas Carmen1

Affiliation:

1. Department of Microbiology and Parasitology

2. Department of Organic Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain

Abstract

ABSTRACT The halophilic bacterium Chromohalobacter salexigens synthesizes and accumulates compatible solutes in response to salt and temperature stress. 13 C-nuclear magnetic resonance analysis of cells grown in minimal medium at the limiting temperature of 45°C revealed the presence of hydroxyectoine, ectoine, glutamate, trehalose (not present in cells grown at 37°C), and the ectoine precursor, N γ-acetyldiaminobutyric acid. High-performance liquid chromatography analyses showed that the levels of ectoine and hydroxyectoine were maximal during the stationary phase of growth. Accumulation of hydroxyectoine was up-regulated by salinity and temperature, whereas accumulation of ectoine was up-regulated by salinity and down-regulated by temperature. The ectD gene, which is involved in the conversion of ectoine to hydroxyectoine, was isolated as part of a DNA region that also contains a gene whose product belongs to the AraC-XylS family of transcriptional activators. Orthologs of ectD were found within the sequenced genomes of members of the proteobacteria, firmicutes, and actinobacteria, and their products were grouped into the ectoine hydroxylase subfamily, which was shown to belong to the superfamily of Fe(II)- and 2-oxoglutarate-dependent oxygenases. Analysis of the ectoine and hydroxyectoine contents of an ectABC ectD mutant strain fed with 1 mM ectoine or hydroxyectoine demonstrated that ectD is required for the main ectoine hydroxylase activity in C. salexigens . Although in minimal medium at 37°C the wild-type strain grew with 0.5 to 3.0 M NaCl, with optimal growth at 1.5 M NaCl, at 45°C it could not cope with the lowest (0.75 M NaCl) or the highest (3.0 M NaCl) salinity, and it grew optimally at 2.5 M NaCl. The ectD mutation caused a growth defect at 45°C in minimal medium with 1.5 to 2.5 M NaCl, but it did not affect growth at 37°C at any salinity tested. With 2.5 M NaCl, the ectD mutant synthesized 38% (at 37°C) and 15% (at 45°C) of the hydroxyectoine produced by the wild-type strain. All of these data reveal that hydroxyectoine synthesis mediated by the ectD gene is thermoregulated and essential for thermoprotection of C. salexigens .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3