Abstract
When thymidine-requiring lexA- strains were starved for thymidine, the kinetics of survival were similar to those of a nearly isogenic lexA+ strain. The size distribution of cells in the lexA- and lexA+ cultures were, however, quite different. Whereas most of the cells in the starved lexA+ cultures grew into long filamentous forms (longer than 4.0 mum), many of the lexA- cells were found to have a normal rod shape (4.0 mum or shorter). It was shown that lexA- cells undergo more divisions during thymidine starvation than lexA+ cells. Furthermore, using an autoradiographic method to analyze deoxyribonucleic acid (DNA) distribution in the starved cells, we demonstrated that cells without DNA are produced in both normal and starved lexA- cultures at a much higher frequency than in lexA+ cultures. Some of these cells may be produced by breakdown of DNA, but we favor the hypothesis that they result from an abnormal cell division process. Since lexA mutations are dominant, we conclude that a diffusible product decreases the synthesis or activity of an inhibitor of cell division in lexA- strains when DNA synthesis is blocked by thymidine starvation.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献