Affiliation:
1. Laboratory of Cellular Oncology
2. Animal Sciences Branch
3. Biometric Research Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
Abstract
ABSTRACT
Antibodies against CCR5, the major coreceptor for human immunodeficiency virus type 1 (HIV-1), may have antiviral potential as viral fusion inhibitors. In this study, we generated a virus-like particle (VLP)-based vaccine that effectively breaks B-cell tolerance and elicits autoantibodies against CCR5 in pig-tailed macaques. Initial studies in mice identified a polypeptide comprising the N-terminal domain of pig-tailed macaque CCR5 fused to streptavidin that, when conjugated at high density to bovine papillomavirus major capsid protein L1 VLPs, induced high-titer immunoglobulin G (IgG) that bound to a macaque CCR5-expressing cell line in vitro. In macaques, CCR5 peptide-conjugated VLP preparations induced high-avidity anti-CCR5 IgG autoantibody responses, and all five immunized macaques generated IgG that could block infection of CCR5-tropic simian/human immunodeficiency virus SHIV
SF162P3
in vitro. Although the anti-CCR5 IgG titers declined with time, autoantibody levels were boosted upon revaccination. Vaccinated macaques remained healthy for a period of over 3 years after the initial immunization, and no decline in the number of CCR5-expressing T cells was detected. To test the prophylactic efficacy of CCR5 autoantibodies, immunized macaques were challenged with SHIV
SF162P3
. Although the plasma-associated virus in half of six control macaques declined to undetectable levels, viral loads were lower, declined more rapidly, and eventually became undetectable in all five macaques in which CCR5 autoantibodies had been elicited. In addition, in the four vaccinated macaques with higher autoantibody titers, viral loads and time to control of viremia were significantly decreased relative to controls, indicating the possibility that CCR5 autoantibodies contributed to the control of viral replication.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献