Superinfection Prevents Recombination of the Alphaherpesvirus Bovine Herpesvirus 1

Author:

Meurens François1,Schynts Frédéric2,Keil Günther M.3,Muylkens Benoît1,Vanderplasschen Alain1,Gallego Pierre4,Thiry Etienne1

Affiliation:

1. Department of Infectious and Parasitic Diseases, Virology, and Immunology

2. Division of Animal Virology, CER, B-6900 Marloie, Belgium

3. Institute of Molecular Biology, Friedrich Loeffler Institutes, Federal Research Centre for Virus Diseases of Animals, 17493 Greifswald-Insel Riems, Germany

4. Laboratory of General Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège

Abstract

ABSTRACT Homologous recombination between strains of the same alphaherpesvirus species occurs frequently both in vitro and in vivo. This process has been described between strains of herpes simplex virus type 1, herpes simplex virus type 2, pseudorabies virus, feline herpesvirus 1, varicella-zoster virus, and bovine herpesvirus 1 (BoHV-1). In vivo, the rise of recombinant viruses can be modulated by different factors, such as the dose of the inoculated viruses, the distance between inoculation sites, the time interval between inoculation of the first and the second virus, and the genes in which the mutations are located. The effect of the time interval between infections with two distinguishable BoHV-1 on recombination was studied in three ways: (i) recombination at the level of progeny viruses, (ii) interference induced by the first virus infection on β-galactosidase gene expression of a superinfecting virus, and (iii) recombination at the level of concatemeric DNA. A time interval of 2 to 8 h between two successive infections allows the establishment of a barrier, which reduces or prevents any successful superinfection needed to generate recombinant viruses. The dramatic effect of the time interval on the rise of recombinant viruses is particularly important for the risk assessment of recombination between glycoprotein E-negative marker vaccine and field strains that could threaten BoHV-1 control and eradication programs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3