Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains

Author:

Reinholdt J1,Kilian M1

Affiliation:

1. Department of Oral Biology, Royal Dental College, University of Aarhus, Aarhus C, Denmark. mikrjr@svfcd.aau.dk

Abstract

Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3