Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells

Author:

Olson J C1,McGuffie E M1,Frank D W1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA. olsonjc@musc.edu

Abstract

Production of the ADP-ribosylating enzyme exoenzyme S (ExoS) by Pseudomonas aeruginosa has been associated with increased virulence. Previous studies, however, have been unable to confirm an effect of soluble ExoS in cell culture or animal model systems. To determine if bacteria must come in contact with target cells in order for an effect of ExoS to be observed, coculture systems were developed to compare the effects of ExoS- and non-ExoS-producing bacteria on eukaryotic cell function. The two P. aeruginosa strains used in these studies, 388 and 388delta exoS, maintained genetic identity, with the exception that strain 388delta exoS lacked production of the 49-kDa form of ExoS. When bacteria were cocultured with Detroit 532 fibroblastic cells, ExoS-producing 388 bacteria caused a significant decrease in DNA synthesis and viability compared to the decrease caused by non-ExoS-producing 388delta exoS bacteria. Maximal differences between the two strains were observed when 10(4) to 10(7) CFU of bacteria/ml were cocultured with Detroit cells for 4 or 6 h. Both strains were effective in eliminating Detroit cell DNA synthesis after a 20-h coculture period. Secreted ExoS had no effect on Detroit cell growth and viability, indicating that bacteria must have contact with target cells for the effect of ExoS on cellular function to be observed. Similar effects on cell proliferation and viability were observed when the two strains were cocultured with the KB epithelioid cell line. ExoS-associated decreases in eukaryotic cell viability were not found to be mediated by an inhibition of protein synthesis. These studies confirm that the 49-kDa ExoS contributes to the cellular pathogenesis of P. aeruginosa by interfering with eukaryotic cell growth and viability. In addition, the coculture system developed which recognizes this effect should provide a means for defining the function of ExoS in vivo.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3