Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme

Author:

Schmitt M P1

Affiliation:

1. Division of Bacterial Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA. Schmitt@A1.cber.fda.gov

Abstract

The hmuO gene is required for the utilization of heme and hemoglobin as iron sources by Corynebacterium diphtheriae. The product of hmuO has homology to eukaryotic heme oxygenases which are involved in the degradation of heme and the release of iron. To investigate the mechanism of hmuO regulation, a promoterless lacZ gene present on the promoter-probe vector pCM502 was placed under transcriptional control of the hmuO promoter. In C. diphtheriae C7, optimal expression from the hmuO promoter was obtained only in the presence of heme or hemoglobin under low-iron conditions. Expression of hmuO in high-iron medium containing heme was repressed five- to sixfold from that seen under low-iron conditions in the presence of heme. Transcription from the hmuO promoter in the absence of heme or hemoglobin was fully repressed in high-iron medium and was expressed at very low levels in iron-depleted conditions. Expression studies with tile hmuO-lacZ fusion construct in C7hm723, a dtxR mutant of C7, and in a hmuO mutant of C. diphtheriae HC1 provided further evidence that transcription of the hmuO promoter is repressed by DtxR and iron and activated by heme. In Escherichia coli, the hmuO promoter was expressed at very low levels under all conditions examined. Gel mobility shift assays and DNase I footprinting experiments indicated that DtxR binds in a metal-dependent manner to a sequence that overlaps the putative hmuO promoter. Total cellular RNA isolated from C. diphtheriae was used to identify the transcriptional start site for the hmuO gene. Northern blot analysis suggested that the hmuO mRNA was monocistronic and that transcription was heme inducible.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3