Subtype-Specific Differences in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Connection Subdomain of CRF01_AE Are Associated with Higher Levels of Resistance to 3′-Azido-3′-Deoxythymidine

Author:

Delviks-Frankenberry Krista A.1,Nikolenko Galina N.1,Maldarelli Frank2,Hase Saiki3,Takebe Yutaka3,Pathak Vinay K.1

Affiliation:

1. Viral Mutation Section

2. Host-Virus Interaction Branch, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland

3. Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan

Abstract

ABSTRACT We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3′-azido-3′-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA templates, and reduced RNase H cleavage. Replacing the T400 residue in CRF01_AE with alanine restored AZT sensitivity and reduced AZTMP excision on both RNA and DNA templates, suggesting that the T400 residue increases AZT resistance in CRF01_AE at least in part by directly increasing the efficiency of AZTMP excision. These results show for the first time that CRF01_AE exhibits higher levels of AZT resistance in the presence of TAMs and that this resistance is primarily associated with T400. Our results also show that mixing the RT polymerase, CN, and RNase H domains from different subtypes can underestimate AZT resistance levels, and they emphasize the need to develop subtype-specific genotypic and phenotypic assays to provide more accurate estimates of clinical drug resistance.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3