Functions of the sequences at the ends of the inverted repeats of pseudorabies virus

Author:

Rall G F1,Kupershmidt S1,Sugg N1,Veach R A1,Ben-Porat T1

Affiliation:

1. Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232.

Abstract

Two mutants were constructed to explore the functions of the sequences at the end of the S terminus of pseudorabies virus (PrV). In mutant vYa, 17 bp from the internal inverted repeat, as well as adjacent sequences from the L component, were deleted. In mutant v135/9, 143 bp from the internal inverted repeat (including sequences with homology to the pac-1 site of herpes simplex virus), as well as adjacent sequences from the L component, were deleted. Our aim in constructing these mutants was to ascertain whether equalization of the terminal regions of the S component would occur, whether genome termini that lack either the terminal 17 or 143 bp would be generated as a result of equalization of the repeats (thereby identifying the terminal nucleotides that may include cleavage signals), and whether inversion of the S component would occur (thereby ascertaining the importance of the deleted sequences in this process). The results obtained show the following (i) The removal of the terminal 17 or 143 bp of the internal S component, including the sequences with homology to the pac-1 site, does not affect the inversion of the Us. (ii) The equalization of both the vYa and the v135/9 inverted repeats occurs at high frequency, the terminal repeats being converted and becoming similar to the mutated internal inverted repeat. (iii) Mutants in which the 17 terminal base pairs (vYa) have been replaced by unrelated sequences are viable. However, the 143 terminal base pairs appear to be essential to virus survival; concatemeric v135/9 DNA with equalized, mutant-type, inverted repeats accumulates, but mature virions with such equalized repeats are not generated at high frequency. Since concatemeric DNA missing the 143 bp at both ends of the S component is not cleaved, the terminal 143 bp that include the sequences with homology to the pac-1 site are necessary for efficient cleavage. (iv) v135/9 intracellular DNA is composed mainly of arrays in which one S component (with two equalized inverted repeats both having the deletion) is bracketed by two L components in opposite orientations and in which two L components are in head-to-head alignment.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3