Evaluation of PhenoMATRIX and PhenoMATRIX PLUS for the screening of MRSA from nasal and inguinal/perineal swabs using chromogenic media

Author:

Cherkaoui Abdessalam1ORCID,Renzi Gesuele1,Schrenzel Jacques12ORCID

Affiliation:

1. Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals , Geneva, Switzerland

2. Division of Infectious Diseases, Department of Medicine, Genomic Research Laboratory, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland

Abstract

ABSTRACT The objective of this study was to assess the clinical performances of PhenoMATRIX and PhenoMATRIX PLUS for the screening of methicillin-resistant Staphylococcus aureus (MRSA) from nasal and inguinal/perineal ESwabs using chromogenic media. The automated performances were compared to the manual reading. Additionally, we evaluated PhenoMATRIX PLUS for the automatic release of the negative results to the Laboratory Information System (LIS) and the automatic discharge of the negative plates from the incubators. A total of 6,771 non-duplicate specimens were used by PhenoMATRIX as a machine learning model. The validation of these settings was performed on 17,223 non-duplicate specimens. The MRSA positivity rate was 5% (866/17,223). Validated settings were then used by PhenoMATRIX PLUS on another 1,409 non-duplicate specimens. The sensitivities of PhenoMATRIX and PhenoMATRIX PLUS were 99.8% [95% confidence interval (CI), 99.2%–99.9%] and 100% (95% CI, 92.1%–100%), respectively. The specificities of PhenoMATRIX and PhenoMATRIX PLUS were 99.1% (95% CI, 99.0%–99.2%) and 95.2% (95% CI, 93.8%–96.1%), respectively. All the 1,297 MRSA-negative specimens analyzed by PhenoMATRIX PLUS were automatically released and sent to the LIS immediately after availability of the culture image on the WASPLab (100% accuracy). All negative media plates were automatically discarded. PhenoMATRIX PLUS decreases the time spent by technologists on negative plates and ensures optimal usage of the incubators' capacity.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3