Anthrose Biosynthetic Operon of Bacillus anthracis

Author:

Dong Shengli1,McPherson Sylvia A.2,Tan Li2,Chesnokova Olga N.2,Turnbough Charles L.2,Pritchard David G.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics

2. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170

Abstract

ABSTRACT The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues and a protein-bound N -acetylgalactosamine. Based on the structure of anthrose, we proposed an enzymatic pathway for its biosynthesis. Examination of the B. anthracis genome revealed six contiguous genes that could encode the predicted anthrose biosynthetic enzymes. These genes are transcribed in the same direction and appear to form two operons. We introduced mutations into the B. anthracis chromosome that either delete the promoter of the putative upstream, four-gene operon or delete selected genes in both putative operons. Spores produced by strains carrying mutations in the upstream operon completely lacked or contained much less anthrose, indicating that this operon is required for anthrose biosynthesis. In contrast, inactivation of the downstream, two-gene operon did not alter anthrose content. Additional experiments confirmed the organization of the anthrose operon and indicated that it is transcribed from a σ E -specific promoter. Finally, we demonstrated that anthrose biosynthesis is not restricted to B. anthracis as previously suggested.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3