Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing

Author:

Swenson D L1,Bukanov N O1,Berg D E1,Welch R A1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Wisconsin-Madison 53706, USA.

Abstract

Many of the virulence genes of pathogenic strains of Escherichia coli are carried in large multigene chromosomal segments called pathogenicity islands (PAIs) that are absent from normal fecal and laboratory K-12 strains of this bacterium. We are studying PAIs in order to better understand factors that govern virulence and to assess how such DNA segments are gained or lost during evolution. The isolation and sample sequencing of a set of 11 cosmid clones that cover all of one and much of a second large PAI in the uropathogenic E. coli J96 are described. These PAIs were mapped to the 64- and 94-min regions of the E. coli K-12 chromosome, which differ from the locations of three PAIs identified in other pathogenic E. coli strains. Analysis of the junction sequences with E. coli K-12-like DNAs showed that the insert at 94 min is within the 3' end of a phenylalanine tRNA gene, pheR, and is flanked by a 135-bp imperfect direct repeat. Analysis of the one junction recovered from the insert at 64 min indicated that it lies near another tRNA gene, pheV. To identify possible genes unique to these PAIs, 100 independent subclones of the cosmids were made by PstI digestion and ligation into a pBS+ plasmid and used in one-pass sample DNA sequencing from primer binding sites at the cloning site in the vector DNA. Database searches of the J96 PAI-specific sequences identified numerous instances in which the cloned DNAs shared significant sequence similarities to adhesins, toxins, and other virulence determinants of diverse pathogens. Several likely insertion sequence elements (IS100, IS630, and IS911) and conjugative R1 plasmid and P4 phage genes were also found. We propose that such mobile genetic elements may have facilitated the spread of virulence determinants within PAIs among bacteria.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3