Structural and Functional Analysis of Mutations along the Crystallographic Dimer Interface of the Yeast TATA Binding Protein

Author:

Kou Haiping1,Irvin Jordan D.1,Huisinga Kathryn L.1,Mitra Madhusmita1,Pugh B. Franklin1

Affiliation:

1. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16803

Abstract

ABSTRACT The TATA binding protein (TBP) is a central component of the eukaryotic transcription machinery and is subjected to both positive and negative regulation. As is evident from structural and functional studies, TBP's concave DNA binding surface is inhibited by a number of potential mechanisms, including homodimerization and binding to the TAND domain of the TFIID subunit TAF1 (yTAF II 145/130). Here we further characterized these interactions by creating mutations at 24 amino acids within the Saccharomyces cerevisiae TBP crystallographic dimer interface. These mutants are impaired for dimerization, TAF1 TAND binding, and TATA binding to an extent that is consistent with the crystal or nuclear magnetic resonance structure of these or related interactions. In vivo, these mutants displayed a variety of phenotypes, the severity of which correlated with relative dimer instability in vitro. The phenotypes included a low steady-state level of the mutant TBP, transcriptional derepression, dominant slow growth (partial toxicity), and synthetic toxicity in combination with a deletion of the TAF1 TAND domain. These phenotypes cannot be accounted for by defective interactions with other known TBP inhibitors and likely reflect defects in TBP dimerization.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3