Sulfhydryl-dependent attachment of Treponema denticola to laminin and other proteins

Author:

Haapasalo M1,Singh U1,McBride B C1,Uitto V J1

Affiliation:

1. Department of Microbiology, University of British Columbia, Vancouver, Canada.

Abstract

Attachment of Treponema denticola ATCC 35405 to laminin, a major basement membrane protein, and to other proteins was studied. Microdilution plates were coated with the proteins, and the attachment of T. denticola was measured by the enzyme-linked immunosorbent assay technique. Compared with bovine serum albumin (BSA), T. denticola had a high affinity to laminin, fibronectin, fibrinogen, and gelatin, as well as to type I and type IV collagens. Attachment to RGD peptide (Gly-Arg-Gly-Asp-Ser, the integrin recognition sequence) was only about 30% of that to laminin and was comparable to attachment to BSA. Tests with laminin fragments obtained through elastase digestion showed that the spirochetes attached well to an A-chain 140-kDa fragment involved in eukaryote cell attachment but did not attach to a 50-kDa fragment that includes the heparin binding site. Pretreatment of T. denticola with soluble laminin, fibronectin, gelatin, BSA, or fibrinogen had no effect on the attachment of the bacteria to laminin or fibronectin. A wide variety of compounds were tested for their possible inhibitory actions on the attachment. While most treatments of T. denticola ATCC 35405 had little or no effect on the attachment to proteins, sulfhydryl reagents p-chloromercuribenzoic acid (pCMBA) and oxidized glutathione inhibited the attachment by 70 to 99%, depending on the protein. When T. denticola was first allowed to attach to proteins, addition of pCMBA or oxidized glutathione could no longer reverse the attachment. Heat treatment of the spirochetes also markedly reduced the attachment to laminin, gelatin, and fibrinogen but not to BSA. Mixed glycosidase treatment of the spirochetes inhibited the attachment by 20 to 80%. None of the above treatments of the substrate proteins had any marked effect on the spirochete attachment. The results indicate that T. denticola has the capacity to bind to many different kinds of proteins by utilizing specific attachment mechanisms. The binding appears to involve protein SH groups and/or carbohydrate residues on the surface of T. denticola.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference44 articles.

1. Relationship between the percentage of subgingival spirochetes and the severity of periodontal disease;Armitage G. C.;J. Periodontol.,1982

2. Baehni P. 1986. Interaction between plaque microorganisms and human oral epithelial cells p. 143-145. In T. Lehner and G. Cimasoni (ed.) Borderland between caries and periodontal disease. 3rd European Symposium. Editions Medicine et Hygiene Geneva.

3. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces;Beachey E. H.;J. Infect. Dis.,1981

4. Structure and function of laminin: anatomy of a multidomain glycoprotein;Beck K.;FASEB J.,1990

5. Culture and origin of epithelium-like and fibroblast-like cells from porcine periodontal ligament and cell suspension;Brunette D. M.;Arch. Oral Biol.,1976

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3