Synthesis and degradation of nitrate reductase in Escherichia coli

Author:

Hackett C S,MacGregor C H

Abstract

The biosynthesis, insertion, and in vivo stability of nitrate reductase were examined by following the amount of labeled enzyme present in both membranes and cytoplasm at varying times after a short pulse of radioactive sulfate. Nitrate reductase levels were measured by autoradiography of immunoprecipitated material after fractionation on sodium dodecyl sulfate-polyacrylamide gels. These experiments demonstrated that subunits A and B were synthesized in the cytoplasm and subsequently inserted into membranes. The insertion of these subunits was dependent upon the synthesis of another protein, and the rate of synthesis of this protein determined the rate of insertion of subunits A and B. The nitrate reductase produced by the chlA mutant was inserted into membranes in the normal fashion, whereas the nitrate reductase produced by the chlC and chlE mutants was poorly incorporated. The nitrate reductase in the wild type was completely stable in vivo under inducing or noninducing conditions, whereas in the chlC and chlE mutants nitrate reductase was degraded extensively in both the cytoplasm and membranes, even under inducing conditions. Under similar conditions, nitrate reductase was stable in the chlA mutant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3