Entry of Duck Hepatitis B Virus into Primary Duck Liver and Kidney Cells after Discovery of a Fusogenic Region within the Large Surface Protein

Author:

Maenz Claudia1,Chang Shau-Feng2,Iwanski Alicja1,Bruns Michael1

Affiliation:

1. Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany

2. Biomedical Engineering Center, Industrial Technology Research Institute, 31000 Chutung Hsinchu, Taiwan, Republic of China

Abstract

ABSTRACT Hepatitis B viruses exhibit a narrow host range specificity that is believed to be mediated by a domain of the large surface protein, designated L. For duck hepatitis B virus, it has been shown that the pre-S domain of L binds to carboxypeptidase D, a cellular receptor present in many species on a wide variety of cell types. Nonetheless, only hepatocytes become infected. It has remained vague which viral features determine host range specificity and organotropicity. By using chymotrypsin to treat duck hepatitis B virus, we addressed the question of whether a putative fusogenic region within the amino-terminal end of the small surface protein may participate in viral entry and possibly constitute one of the determinants of the host range of the virus. Addition of the enzyme to virions resulted in increased infectivity. Remarkably, even remnants of enzyme-treated subviral particles proved to be inhibitory to infection. A noninfectious deletion mutant devoid of the binding region for carboxypeptidase D could be rendered infectious for primary duck hepatocytes by treatment with chymotrypsin. Although because of the protease treatment mutant and wild-type viruses may have become infectious in an unspecific and receptor-independent manner, their host range specificity was not affected, as shown by the inability of the virus to replicate in different hepatoma cell lines, as well as primary chicken hepatocytes. Instead, the organotropicity of the virus could be reduced, which was demonstrated by infection of primary duck kidney cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3