A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease

Author:

Wiegand Marian Alexander1,Gori-Savellini Gianni2,Gandolfo Claudia2,Papa Guido2,Kaufmann Christine1,Felder Eva1,Ginori Alessandro3,Disanto Maria Giulia3,Spina Donatella3,Cusi Maria Grazia2

Affiliation:

1. AmVac Research GmbH, Martinsried, Germany

2. Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy

3. Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy

Abstract

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated. IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.

Funder

Bayerische Forschungsstiftung

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3