Affiliation:
1. Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231.
Abstract
Genomic DNA fragments encoding beta-glucosidase activities of the thermophilic actinomycete Microbispora bispora were cloned into Escherichia coli. Transformants expressing beta-glucosidase activity were selected by their ability to hydrolyze the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucoside. Two genes encoding beta-glucosidase activity were isolated and distinguished by restriction analysis, Southern hybridization, and the substrate specificities of the encoded enzymes. One gene, bglB, encoded a beta-glucosidase that was expressed intracellularly in E. coli. It exhibited a molecular mass of approximately 52,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and 51,280 Da by nondenaturing gradient PAGE, a pI of 4.6, and temperature and pH optima of 60 degrees C and 6.2, respectively. Cloned BglB showed greater activity against cellobiose than against aryl-beta-D-glucosides and was thermostable, retaining about 70% of its activity after 48 h at 60 degrees C. BglB activity is activated two- to threefold in the presence of 2 to 5% (0.1 to 0.3 M) glucose. The DNA sequence of the 2.2-kb insert carrying bglB has been determined. An open reading frame which codes for a protein of 473 amino acids with a predicted molecular mass of 52,227 Da showed significant homology (40 to 47% identity) with beta-glucosidases from glycosal hydrolase family 1.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献