Toll-Like Receptors: Insights into Their Possible Role in the Pathogenesis of Lyme Neuroborreliosis

Author:

Bernardino Andrea L. F.1,Myers Tereance A.1,Alvarez Xavier2,Hasegawa Atsuhiko3,Philipp Mario T.1

Affiliation:

1. Divisions of Bacteriology and Parasitology

2. Comparative Pathology

3. Immunology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana

Abstract

ABSTRACT Lyme neuroborreliosis is likely caused by inflammatory effects of the tick-borne spirochete Borrelia burgdorferi on the nervous system. Microglia, the resident macrophage cells within the central nervous system (CNS), are important in initiating an immune response to microbial products. In addition, astrocytes, the major CNS glial cell type, also can contribute to brain inflammation. TLRs (Toll-like receptors) are used by glial cells to recognize pathogen-associated molecular patterns (PAMPs), mediate innate responses, and initiate an acquired immune response. Here we hypothesize that because of their PAMP specificities, TLR1, -2, -5, and -9 may be involved in the pathogenesis of Lyme neuroborreliosis. Previous reports have shown that the rhesus monkey is the only animal model to exhibit signs of Lyme neuroborreliosis. Therefore, we used primary cultures of rhesus astrocytes and microglia to determine the role of TLRs in mediating proinflammatory responses to B. burgdorferi . The results indicate that microglia and astrocytes respond to B. burgdorferi through TLR1/2 and TLR5. In addition, we observed that phagocytosis of B. burgdorferi by microglia enhances not only the expression of TLR1, -2, and -5, but also that of TLR4. Taken together, our data provide proof of the concept that astrocyte and microglial TLR1, -2, and -5 are involved in the in vivo response of primate glial cells to B. burgdorferi . The proinflammatory molecules elicited by these TLR-mediated responses could be a significant factor in the pathogenesis of Lyme neuroborreliosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lyme disease (clinical lecture);Shidnoevropejskij zurnal vnutrisnoi ta simejnoi medicini;2023-12

2. Lyme Disease and Hearing Loss in Children;Hearing Loss in Congenital, Neonatal and Childhood Infections;2023

3. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk;Life Sciences;2022-09

4. Lyme Disease in Humans;Current Issues in Molecular Biology;2022

5. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes;Current Issues in Molecular Biology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3