Mechanism of action of Pseudomonas aeruginosa exotoxin Aiadenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo

Author:

Iglewski B H,Liu P V,Kabat D

Abstract

Previous studies showed that Pseudomonas aeruginosa exotoxin A (PA toxin) catalyzes nicotinamide adenine dinucleotide (NAD)-dependent inhibition of protein synthesis in a rabbit reticulocyte lysate and transfer of radioactivity from [14C]adenine-labeled NAD to a protein having the same molecular weight as elongation factor 2 (EF-2) (B.H.Iglewski and D. Kabat, 1975). Such an inhibited protein-synthesizing lysate was restored to activity by addition of a protein from normal mouse liver which co-purifies with EF-2. In addition, EF-2 activity was almost totally absent in livers of mice which had been injected 24 h earlier with PA toxin. On the contrary, EF-2 concentrations were only partially reduced in other organs and were normal in brains of intoxicated mice. Studies using NAD labeled in various positions show that PA toxin, like fragment A of diphtheria toxin, catalyzes transfer of the adenosine 5'-diphosphate-ribosyl moiety of NAD. Furthermore, reversal occurred when the modified protein was incubated with excess concentrations of PA toxin and nicotinamide, and NAD was identified as a product of the reverse reaction. The protein modification catalyzed either by PA toxin or by fragment A of diphtheria toxin could be reversed by incubation with other toxin. These results support the proposal that these two toxins adenosine 5'-diphosphate-ribosylate and same amino acid of EF-2 in a stereochemically identical fashion. Furthermore, PA toxin inactivates EF-2 in intoxicated mice to an extent which would ultimately result in death.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 263 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3