Furin-, ADAM 10-, and γ-Secretase-Mediated Cleavage of a Receptor Tyrosine Phosphatase and Regulation of β-Catenin's Transcriptional Activity

Author:

Anders Lars1,Mertins Philipp1,Lammich Sven2,Murgia Marta1,Hartmann Dieter3,Saftig Paul4,Haass Christian2,Ullrich Axel1

Affiliation:

1. Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

2. Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Muenchen, Germany

3. Department of Human Genetics, KU Leuven and Flanders Interuniversity Institute for Biotechnology (VIB-4), 3000 Leuven, Belgium

4. Institute of Biochemistry, Christian Albrechts University, 24118 Kiel, Germany

Abstract

ABSTRACT Several receptor protein tyrosine phosphatases (RPTPs) are cell adhesion molecules involved in homophilic interactions, suggesting that RPTP outside-in signaling is coupled to cell contact formation. However, little is known about the mechanisms by which cell density regulates RPTP function. We show that the MAM family prototype RPTPκ is cleaved by three proteases: furin, ADAM 10, and γ-secretase. Cell density promotes ADAM 10-mediated cleavage and shedding of RPTPκ. This is followed by γ-secretase-dependent intramembrane proteolysis of the remaining transmembrane part to release the phosphatase intracellular portion (PIC) from the membrane, thereby allowing its translocation to the nucleus. When cells were treated with leptomycin B, a nuclear export inhibitor, PIC accumulated in nuclear bodies. PIC is an active protein tyrosine phosphatase that binds to and dephosphorylates β-catenin, an RPTPκ substrate. The expression of RPTPκ suppresses β-catenin's transcriptional activity, whereas the expression of PIC increases it. Notably, this increase required the phosphatase activity of PIC. Thus, both isoforms have acquired opposing roles in the regulation of β-catenin signaling. We also found that RPTPμ, another MAM family member, undergoes γ-secretase-dependent processing. Our results identify intramembrane proteolysis as a regulatory switch in RPTPκ signaling and implicate PIC in the activation of β-catenin-mediated transcription.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3