The P-113 Fragment of Histatin 5 Requires a Specific Peptide Sequence for Intracellular Translocation in Candida albicans , Which Is Independent of Cell Wall Binding

Author:

Jang Woong Sik1,Li Xuewei Serene1,Sun Jianing N.1,Edgerton Mira12

Affiliation:

1. Department of Oral Biology

2. Restorative Dentistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214

Abstract

ABSTRACT The activity of histatin 5 (Hst 5) against Candida albicans is initiated through cell wall binding, followed by translocation and intracellular targeting. The C. albicans cell wall protein Ssa2 is involved in the transport of Hst 5 into cells as part of cell killing. P-113 (a 12-amino-acid candidacidal active fragment of Hst 5) and P-113Q2.10 (which is inactivated by a glutamine substitution of the Lys residues at positions 2 and 10) were compared for their levels of cell wall binding and intracellular translocation in Candida wild-type (wt) and ssa2 Δ strains. Both P-113 and P-113Q2.10 bound to the walls of C. albicans wt and ssa2 Δ cells, although the quantity of P-113Q2.10 in cell wall extracts was higher than that of P-113 in both strains. Increasing the extracellular NaCl concentration to 100 mM completely inhibited the cell wall association of both peptides, suggesting that these interactions are primarily ionic. The accumulation of P-113 in the cytosol of wt cells reached maximal levels within 15 min (0.26 μg/10 7 cells), while ssa2 Δ mutant cells had maximal cytosolic levels of less than 0.2 μg/10 7 cells even after 30 min of incubation. Furthermore, P-113 but not P-113Q2.10 showed specific binding with a peptide array of C. albicans Ssa2p. P-113Q2.10 was not transported into the cytosol of either C. albicans wt or ssa2 Δ cells, despite the high levels of cell wall binding, showing that the two cationic lysine residues at positions 2 and 10 in the P-113 peptide are important for transport into the cytosol and that binding and transport are independent functional events.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3