Pharmacokinetic Modeling of Voriconazole To Develop an Alternative Dosing Regimen in Children

Author:

Gastine Silke1,Lehrnbecher Thomas2,Müller Carsten3,Farowski Fedja34,Bader Peter5,Ullmann-Moskovits Judith2,Cornely Oliver A.4,Groll Andreas H.6,Hempel Georg1

Affiliation:

1. Institute of Pharmaceutical and Medical Chemistry-Department of Clinical Pharmacy, Westfälische Wilhelms-Universität Münster, Münster, Germany

2. Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany

3. Therapeutic Drug Monitoring Section, Centre of Pharmacology, University Hospital of Cologne, Cologne, Germany

4. CECAD Cluster of Excellence and Clinical Trial Center, University of Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany

5. Division of Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany

6. Infectious Disease Research Program, Center for Bone Marrow Transplantation, and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany

Abstract

ABSTRACT The pharmacokinetic variability of voriconazole (VCZ) in immunocompromised children is high, and adequate exposure, particularly in the first days of therapy, is uncertain. A population pharmacokinetic model was developed to explore VCZ exposure in plasma after alternative dosing regimens. Concentration data were obtained from a pediatric phase II study. Nonlinear mixed effects modeling was used to develop the model. Monte Carlo simulations were performed to test an array of three-times-daily (TID) intravenous dosing regimens in children 2 to 12 years of age. A two-compartment model with first-order absorption, nonlinear Michaelis-Menten elimination, and allometric scaling best described the data (maximal kinetic velocity for nonlinear Michaelis-Menten clearance [ V max ] = 51.5 mg/h/70 kg, central volume of distribution [ V 1 ] = 228 liters/70 kg, intercompartmental clearance [ Q ] = 21.9 liters/h/70 kg, peripheral volume of distribution [ V 2 ] = 1,430 liters/70 kg, bioavailability [ F ] = 59.4%, K m = fixed value of 1.15 mg/liter, absorption rate constant = fixed value of 1.19 h −1 ). Interindividual variabilities for V max , V 1 , Q , and F were 63.6%, 45.4%, 67%, and 1.34% on a logit scale, respectively, and residual variability was 37.8% (proportional error) and 0.0049 mg/liter (additive error). Monte Carlo simulations of a regimen of 9 mg/kg of body weight TID simulated for 24, 48, and 72 h followed by 8 mg/kg two times daily (BID) resulted in improved early target attainment relative to that with the currently recommended BID dosing regimen but no increased rate of accumulation thereafter. Pharmacokinetic modeling suggests that intravenous TID dosing at 9 mg/kg per dose for up to 3 days may result in a substantially higher percentage of children 2 to 12 years of age with adequate exposure to VCZ early during treatment. Before implementation of this regimen in patients, however, validation of exposure, safety, and tolerability in a carefully designed clinical trial would be needed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3