Selective Targeting of Topoisomerase IV and DNA Gyrase in Staphylococcus aureus : Different Patterns of Quinolone- Induced Inhibition of DNA Synthesis

Author:

Fournier Bénédicte1,Zhao Xilin2,Lu Tao2,Drlica Karl2,Hooper David C.1

Affiliation:

1. Infectious Disease Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696,1 and

2. Public Health Research Institute, New York, New York 100162

Abstract

ABSTRACT The effect of quinolones on the inhibition of DNA synthesis in Staphylococcus aureus was examined by using single resistance mutations in parC or gyrA to distinguish action against gyrase or topoisomerase IV, respectively. Norfloxacin preferentially attacked topoisomerase IV and blocked DNA synthesis slowly, while nalidixic acid targeted gyrase and inhibited replication rapidly. Ciprofloxacin exhibited an intermediate response, consistent with both enzymes being targeted. The absence of RecA had little influence on target choice by this assay, indicating that differences in rebound (repair) DNA synthesis were not responsible for the results. At saturating drug concentrations, norfloxacin and a gyrA mutant were used to show that topoisomerase IV-norfloxacin-cleaved DNA complexes are distributed on the S. aureus chromosome at intervals of about 30 kbp. If cleaved complexes block DNA replication, as indicated by previous work, such close spacing of topoisomerase-quinolone-DNA complexes should block replication rapidly (replication forks are likely to encounter a cleaved complex within a minute). Thus, the slow inhibition of DNA synthesis at growth-inhibitory concentrations suggests that a subset of more distantly distributed complexes is physiologically relevant for drug action and is unlikely to be located immediately in front of the DNA replication fork.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3