Regulation of int gene expression in bacteriophage P2

Author:

Yu A1,Barreiro V1,Haggård-Ljungquist E1

Affiliation:

1. Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Abstract

The int gene of bacteriophage P2 is the only viral gene necessary for the integration of P2 into the Escherichia coli host chromosome. This gene is situated between the phage attachment site, attP, and the repressor C gene, and is cotranscribed with C from the Pc promoter, towards attP. The Pc promoter is negatively controlled by the cox gene, which is the first gene of the early operon. In vitro recombination assays have indicated that in P2 an overproduction of Int is deleterious to the integrative process. We report here that the level of int expression is affected by several different mechanisms after transcriptional initiation. First, a partial transcription termination signal located between the int and C genes reduces the the transcriptional readthrough by about 30%. Second, the ribosome binding site and AUG codon of the int gene are located in a putative stem-loop structure, which may inhibit the initiation of translation. The nip1 mutation (a G to A substitution at the 22nd coding nucleotide of int which results in an increased efficiency of excision) is shown to relieve this inhibition, possible through the formation of an alternative mRNA secondary structure. However, the third and probably most important control of int expression in P2 seems to be that of posttranscriptional autoregulation. The binding site of the Int protein on int gene mRNA is shown to extend into the ribosome binding site of int, supporting our earlier proposed model of competitive binding between Int and ribosomes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference38 articles.

1. The cII-independent expression of the phage A int gene in RNaseIII-defective E. coli;Belfort M.;Gene,1980

2. Multiple Iysogeny from single infection;Bertani G.;Virology,1962

3. Abortive induction of bacteriophage P2;Bertani L. E.;Virology,1968

4. Eschenichia coli XerC recombinase is required for chromosomal segregation at cell division;Blakely G.;New Biol.,1991

5. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3