In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain

Author:

Ghadge G D1,Malhotra P1,Furtado M R1,Dhar R1,Thimmapaya B1

Affiliation:

1. Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

Adenoviruses use the virus-encoded virus-associated RNA (VAI RNA) as a defense against cellular antiviral response by blocking the activation of the interferon-induced, double-stranded RNA-activated protein kinase PKR. The structure of VAI RNA consists of two long, imperfectly base-paired duplex regions connected by a complex short stem-loop at the center, referred to as the central domain. By using a series of adenovirus mutants with linker-scan mutations in the VAI RNA gene, we recently showed that the critical elements required for function in the VAI RNA molecule are in the central domain and that these same elements of the central domain are also involved in binding to PKR. In virus-infected cells, VAI RNA interacts with latent kinase, which is bound to ribosomes; this interaction takes place in a complex milieu. To more fully understand the relationship between structure and function and to determine whether the in vivo phenotype of these mutants can be reproduced in vitro, we have now analyzed these mutant VAI alleles for their ability to block the activation of a partially purified PKR from HeLa cells. We have also derived the structure of these mutants experimentally and correlated the structure with function. Without exception, when the structure of the short stem-loop of the central domain was perturbed, the mutants failed to inhibit PKR. Structural disruptions elsewhere in the central domain or in the long duplex regions of the molecule were not deleterious for in vitro function. Thus, these results support our previous findings and underscore the importance of the elements present in the central domain of the VAI RNA for its function. Our results also suggest that the interaction between PKR and VAI RNA involves a precise secondary (and tertiary) structure in the central domain. It has been suggested that VAI RNA does not activate PKR in virus-infected cells because of mismatches in the imperfectly base-paired long duplex regions. We constructed mutant VAI genes in which the imperfectly base-paired duplex regions were converted to perfectly base-paired regions and assayed in vitro for the activation of PKR. As with the wild-type VAI RNA, these mutants failed to activate PKR in vitro, while they were able to block the activation of PKR better than did the wild type. These results suggest that the failure of VAI RNA to activate PKR is not the result of mismatches in the long duplex regions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference59 articles.

1. A mechanism by which adenovirus virus-associated RNA controls translation in a transient assay;Akusjarvi G.;Mol. Cell. Biol.,1987

2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. A. Smith J. G. Seidman and K. Struhl (ed.). 1987. Current protocols in molecular biology. Green Publishing Associates and John Wiley & Sons New York.

3. Mechanism of interferon action: purification and substrate specificities of the double-stranded RNA dependent protein kinase from untreated and interferon treated mouse fibroblasts;Berry M. J.;J. Biol. Chem.,1985

4. Structural requirements of adenovirus VAI RNA for its translation enhancement function;Bhat R. A.;Mol. Cell. Biol.,1985

5. Adenovirus mutants with DNA sequence perturbations in the intragenic promoter of VAI RNA gene allow the enhanced transcription of VAII RNA gene in HeLa cells;Bhat R. A.;Nucleic Acids Res.,1984

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3