Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form

Author:

Cross C E1,Bancroft G J1

Affiliation:

1. Department of Clinical Sciences, London School of Hygiene and Tropical Medicine, England.

Abstract

Cryptococcus neoformans is a pathogenic yeast and a major cause of opportunistic infection in AIDS patients. It is commonly found in an acapsular form in the environment, and infection is likely to occur by inhalation. The lung provides a suitable environment for capsule synthesis, and once encapsulated, C. neoformans becomes resistant to phagocytosis. A stable acapsular mutant of the organism is readily ingested by murine macrophages in vitro, indicating entry via constitutively competent receptors. We demonstrate in this report that this process is inhibitable by particles derived from Saccharomyces cerevisiae that are rich in mannan and beta-glucan, as well as more purified forms of these glycans. Furthermore, ingestion of the acapsular form of C. neoformans induces a range of proinflammatory cytokines, including tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor, which, as we have previously shown, enhance ingestion of serum-opsonized encapsulated C. neoformans in vitro. We demonstrate that ingestion of the acapsular form of the organism also enhances ingestion of the pathogenic encapsulated form. This is dependent on the production of tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor by the macrophages, since addition of neutralizing antibodies to both cytokines inhibited the observed increase in ingestion. Together, these data demonstrate that ingestion of acapsular C. neoformans is mediated via mannose and beta-glucan receptors on the macrophage surface and that this process activates macrophages for enhanced phagocytosis of the encapsulated form via production of macrophage-derived cytokines.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3