Pathogenesis of Yersinia pestis Infection in BALB/c Mice: Effects on Host Macrophages and Neutrophils

Author:

Lukaszewski Roman A.1,Kenny Dermot J.1,Taylor Rosa1,Rees D. G. Cerys1,Hartley M. Gill1,Oyston Petra C. F.1

Affiliation:

1. Department of Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom

Abstract

ABSTRACT The pathogenesis of infection with Yersinia pestis , the causative agent of plague, was examined following subcutaneous infection of BALB/c mice with a fully virulent strain expressing green fluorescent protein. Plate culturing, flow cytometry, and laser confocal microscopy of spleen homogenates throughout infection revealed three discernible stages of infection. The early phase was characterized by the presence of a small number of intracellular bacteria mostly within CD11b + macrophages and Ly-6G + neutrophils. These bacteria were not viable, as determined by plate culturing of spleen homogenates, until day 2 postinfection. Between days 2 and 4 postinfection, a plateau phase was observed, with bacterial burdens of 10 3 to 10 4 CFU per spleen. Flow cytometric analysis revealed that there was even distribution of Y. pestis within both CD11b + macrophage and Ly-6G + neutrophil populations on day 2 postinfection. However, from day 3 postinfection onward, intracellular bacteria were observed exclusively within splenic CD11b + macrophages. The late phase of infection, between days 4 and 5 postinfection, was characterized by a rapid increase in bacterial numbers, as well as escape of bacteria into the extracellular compartment. Annexin V staining of spleens indicated that a large proportion of splenic neutrophils underwent rapid apoptosis on days 1 and 2 postinfection. Fewer macrophages underwent apoptosis during the same period. Our data suggest that during the early stages of Y. pestis infection, splenic neutrophils are responsible for limiting the growth of Y. pestis and that splenic macrophages provide safe intracellular shelters within which Y. pestis is able to grow and escape during the later stages of infection. This macrophage compliance can be overcome in vitro by stimulation with a combination of gamma interferon and tumor necrosis factor alpha.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference37 articles.

1. Andrew, P. W., J. P. S. Jackett, and D. B. Lowrie. 1985. Killing and degradation of microorganisms by macrophages, p. 311-335. In R. T. Dean, W. Jessop, and J. W. Dean (ed.), Mononuclear phagocytes: physiology and pathology. Elsevier Biomedical Press, Amsterdam, The Netherlands.

2. Early gamma interferon mRNA expression is associated with resistance of mice against Yersinia enterocolitica

3. Role of YopP in Suppression of Tumor Necrosis Factor Alpha Release by Macrophages during Yersinia Infection

4. Factors promoting acute and chronic diseases caused by yersiniae

5. Cavanaugh, D., and R. Randall. 1959. The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne plague. J. Immunol.83:348-363.

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3