Inhibition of Cell Surface Export of Group A Streptococcal Anchorless Surface Dehydrogenase Affects Bacterial Adherence and Antiphagocytic Properties

Author:

Boël Grégory1,Jin Hong1,Pancholi Vijay1

Affiliation:

1. Laboratory of Bacterial Pathogenesis, Public Health Research Institute at The International Center for Public Health, 225 Warren Street, Newark, New Jersey 07103-3535

Abstract

ABSTRACT Surface dehydrogenase (SDH) is an anchorless, multifunctional protein displayed on the surfaces of group A Streptococcus (GAS) organisms. SDH is encoded by a single gene, sdh ( gap or plr ) that is essential for bacterial survival. Hence, the resulting nonfeasibility of creating a knockout mutant is a major limiting factor in studying its role in GAS pathogenesis. An insertion mutagenesis strategy was devised in which a nucleotide sequence encoding a hydrophobic tail of 12 amino acids ( 337 IVLVGLVMLLLS 348 ) was added at the 3′ end of the sdh gene, successfully creating a viable mutant strain (M1-SDH HBtail ). In this mutant strain, the SDH HBtail protein was not secreted in the medium but was retained in the cytoplasm and to some extent trapped within the cell wall. Hence, SDH HBtail was not displayed on the GAS surface. The mutant strain, M1-SDH HBtail , grew at the same rate as the wild-type strain. The SDH HBtail protein displayed the same GAPDH activity as the wild-type SDH protein. Although the whole-cell extracts of the wild-type and mutant strains showed similar GAPDH activities, cell wall extracts of the mutant strain showed 5.5-fold less GAPDH activity than the wild-type strain. The mutant strain, M1-SDH HBtail , bound significantly less human plasminogen, adhered poorly to human pharyngeal cells, and lost its innate antiphagocytic activity. These results indicate that the prevention of the cell surface export of SDH affects the virulence properties of GAS. The anchorless SDH protein, thus, is an important virulence factor.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3