Affiliation:
1. Department of Etiologic Biology, Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
Abstract
ABSTRACT
Because invasion of erythrocytes by
Plasmodium falciparum
merozoites involves multiple receptor-ligand interactions, it may be necessary to develop a multivalent malaria vaccine that is comprised of distinct parasite ligands. PfAMA-1, PfMSP1, and PfEBA-175 are merozoite proteins that play important roles in invasion. We have constructed a PfCP-2.9 chimeric protein consisting of PfAMA-1 and PfMSP1 and tested it for immunogenicity in animal models and humans. The F2 subdomain of PfEBA-175 (PfEBA-175II F2) was identified as the binding domain for glycophorin A on erythrocytes. In this study, we used the codon frequencies of the yeast
Pichia pastoris
to redesign and synthesize a gene encoding the F2 domain. We found that the codon-optimized gene was expressed at a high level in
P. pastoris
as a soluble protein with a yield of about 300 mg/liter. The expressed protein was able to bind normal erythrocytes but not those treated with neuraminidase or trypsin. Moreover, the protein was recognized by the sera of malaria patients and was highly immunogenic in mice, rabbits, and rhesus monkeys. Immunoglobulin G isolated from both immunized rabbits and monkeys inhibited in vitro parasite growth. Immunization of animals with a combination of PfEBA-175II F2 and PfCP-2.9 did not result in antigen (Ag) competition in animals. Moreover, antibodies to both PfEBA-175II F2 and PfCP-2.9, isolated from rabbits immunized with both constructs, inhibited parasite growth in vitro. The combination of high yield, functional folding, antibody inhibition, and lack of Ag competition provides support for inclusion of these merozoite proteins in a combination vaccine against infection with blood-stage parasites.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献