SipA, SopA, SopB, SopD, and SopE2 Contribute to Salmonella enterica Serotype Typhimurium Invasion of Epithelial Cells

Author:

Raffatellu Manuela1,Wilson R. Paul1,Chessa Daniela1,Andrews-Polymenis Helene1,Tran Quynh T.12,Lawhon Sara2,Khare Sangeeta2,Adams L. Garry2,Bäumler Andreas J.1

Affiliation:

1. Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University System Health Science Center

2. Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas

Abstract

ABSTRACT The centisome 63 type III secretion system (T3SS-1) encoded by Salmonella pathogenicity island 1 (SPI1) mediates invasion of epithelial cells by Salmonella enterica serotype Typhimurium. Characterization of mutants lacking individual genes has revealed that T3SS-1 secreted proteins (effectors) SopE2 and SopB are required for invasion while the SipA protein accelerates entry into cells. Here we have revisited the question of which T3SS-1 effectors contribute to the invasion of epithelial cells by complementing a strain lacking all of the effector genes that are required to cause diarrhea in a calf (a sipA sopABDE2 mutant). Introduction of either the cloned sipA , the cloned sopB , or the cloned sopE2 gene increased the invasiveness of the sipA sopABDE2 mutant for nonpolarized HT-29 cells. However, a contribution of sopA or sopD to invasion was not apparent when invasion assays were performed with the nonpolarized colon carcinoma cell lines T84 and HT-29. In contrast, introduction of either the sopA , the sopB , the sopD , or the sopE2 gene increased the invasiveness of the sipA sopABDE2 mutant for polarized T84 cells. Furthermore, introduction of a plasmid carrying sipA and sopB increased the invasiveness of the sipA sopABDE2 mutant for polarized T84 cells significantly compared to the introduction of plasmids carrying only sipA or sopB . We conclude that SipA, SopA, SopB, SopD, and SopE2 contribute to S. enterica serotype Typhimurium invasion of epithelial cells in vitro.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3