Affiliation:
1. Department of Environmental Medicine
2. Hematology-Oncology Unit, Department of Medicine
3. Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
Abstract
ABSTRACT
Rocky Mountain spotted fever, a systemic tick-borne illness caused by the obligate intracellular bacterium
Rickettsia rickettsii
, is associated with widespread infection of the vascular endothelium.
R. rickettsii
infection induces a biphasic pattern of the nuclear factor-κB (NF-κB) activation in cultured human endothelial cells (ECs), characterized by an early transient phase at 3 h and a late sustained phase evident at 18 to 24 h. To elucidate the underlying mechanisms, we investigated the expression of NF-κB subunits, p65 and p50, and IκB proteins, IκBα and IκBβ. The transcript and protein levels of p50, p65, and IκBβ remained relatively unchanged during the course of infection, but Ser-32 phosphorylation of IκBα at 3 h was significantly increased over the basal level in uninfected cells concomitant with a significant increase in the expression of IκBα mRNA. The level of IκBα mRNA gradually returned toward baseline, whereas that of total IκBα protein remained lower than the corresponding controls. The activities of IKKα and IKKβ, the catalytic subunits of IκB kinase (IKK) complex, as measured by in vitro kinase assays with immunoprecipitates from uninfected and
R. rickettsii
-infected ECs, revealed significant increases at 2 h after infection. The activation of IKK and early phase of NF-κB response were inhibited by heat treatment and completely abolished by formalin fixation of rickettsiae. The IKK inhibitors parthenolide and aspirin blocked the activities of infection-induced IKKα and IKKβ, leading to attenuation of nuclear translocation of NF-κB. Also, increased activity of IKKα was evident later during the infection, coinciding with the late phase of NF-κB activation. Thus, activation of catalytic components of the IKK complex represents an important upstream signaling event in the pathway for
R. rickettsii
-induced NF-κB activation. Since NF-κB is a critical regulator of inflammatory genes and prevents host cell death during infection via antiapoptotic functions, selective inhibition of IKK may provide a potential target for enhanced clearance of rickettsiae and an effective strategy to reduce inflammatory damage to the host during rickettsial infections.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献