Uropathogenic Escherichia coli Flagella Aid in Efficient Urinary Tract Colonization

Author:

Wright Kelly J.1,Seed Patrick C.12,Hultgren Scott J.1

Affiliation:

1. Department of Molecular Microbiology, Box 8230

2. Division of Pediatric Infectious Diseases, Box 8116, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110

Abstract

ABSTRACT In the murine model of urinary tract infections (UTI), cystitis by uropathogenic Escherichia coli (UPEC) occurs through an intimate relationship with the bladder superficial umbrella cell entailing cycles of adherence, invasion, intracellular bacterial community (IBC) formation, and dispersal (fluxing) from the intracellular environment. IBC dispersal is a key step that results in the spread of bacteria over the epithelial surface to initiate additional rounds of IBC formation. We investigated the role of flagella in mediating adherence and motility during UTI, hypothesizing that the dispersion of the IBC would be incomplete in the absence of motility, thus interrupting the IBC pathway and attenuating the infection. Using gfp reporter fusions, the expression of the flagellar class I flhDC and class III fliC genes was monitored to track key points of regulation throughout the pathogenic cascade. In vitro, growth under conditions promoting motility resulted in the robust expression of both fusions. In contrast, only the class I fusion produced significant expression throughout early stages of IBC development including the dispersion stage. Thus, unlike in vitro modeling of motility, the regulatory cascade appeared incomplete in vivo. Throughout IBC formation, nonmotile Δ fliC mutants achieved the same number of IBCs as the wild-type ( wt ) strain, demonstrating that flagella are neither essential nor required for first- or second-generation IBC formation. However, in competition experiments between wt and Δ fliC strains, the wt was shown to have a fitness advantage in persisting throughout the urinary tract for 2 weeks, demonstrating a subtle but measurable role for flagella in virulence.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3