SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells

Author:

Banerjee S K1,Borden A1,Christensen R B1,LeClerc J E1,Lawrence C W1

Affiliation:

1. Department of Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642.

Abstract

We have transfected SOS-induced and uninduced cells of a uvrA6 strain of Escherichia coli with single-stranded M13mp7-based vectors that carried a single trans-syn T-T cyclobutane dimer at a unique site. Unlike constructs carrying the cis-syn isomer of this lesion, these vectors could be replicated with modest efficiency (14%) in the absence of SOS induction and therefore provided an opportunity to measure directly the influence of such induction on error rate and mutation spectrum. We found that translesion synthesis in the absence of SOS induction was remarkably accurate; only 4% of the replicated bacteriophage contained mutations, which were exclusively targeted single T deletions. In SOS-induced cells, error frequency increased to 11% and the resulting mutations included targeted substitutions and near-targeted single base additions, as well as the T deletions. Replication efficiency was 29% in these conditions. SOS induction therefore leads not only to an enhanced capacity to replicate damaged DNA but also to a marked change in mutation frequency and spectrum.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3