Salmonella enteritidis : AmpC Plasmid-Mediated Inducible β-Lactamase (DHA-1) with an ampR Gene from Morganella morganii

Author:

Barnaud Guilene1,Arlet Guillaume1,Verdet Charlotte1,Gaillot Olivier2,Lagrange Philippe H.1,Philippon Alain1

Affiliation:

1. Service de Microbiologie, Hôpital Saint-Louis,1 and

2. Service de Microbiologie, Hôpital Boucicaut,2 Paris, France

Abstract

ABSTRACT DHA-1, a plasmid-mediated cephalosporinase from a single clinical Salmonella enteritidis isolate, conferred resistance to oxyimino-cephalosporins (cefotaxime and ceftazidime) and cephamycins (cefoxitin and moxalactam), and this resistance was transferable to Escherichia coli HB101. An antagonism was observed between cefoxitin and aztreonam by the diffusion method. Transformation of the transconjugant E. coli strain with plasmid pNH5 carrying the ampD gene (whose product decreases the level of expression of ampC ) resulted in an eightfold decrease in the MIC of cefoxitin. A clone with the same AmpC susceptibility pattern with antagonism was obtained, clone E. coli JM101(pSAL2-ind), and its nucleotide sequence was determined. It contained an open reading frame with 98.7% DNA sequence identity with the ampC gene of Morganella morganii . DNA sequence analysis also identified a gene upstream of ampC whose sequence was 97% identical to the partial sequence of the ampR gene (435 bp) from M. morganii . The gene encoded a protein with an amino-terminal DNA-binding domain typical of transcriptional activators of the LysR family. Moreover, the intercistronic region between the ampC and ampR genes was 98% identical to the corresponding region from M. morganii DNA. AmpR was shown to be functional by enzyme induction and a gel mobility-shift assay. An ampG gene was also detected in a Southern blot of DNA from the S. enteritidis isolate. These findings suggest that this inducible plasmid-mediated AmpC type β-lactamase, DHA-1, probably originated from M. morganii.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3