Ex Vivo Comparison of Microbicide Efficacies for Preventing HIV-1 Genomic Integration in Intraepithelial Vaginal Cells

Author:

McElrath M. Juliana123,Ballweber Lamar4,Terker Andrew1,Kreger Allison4,Sakchalathorn Polachai1,Robinson Barry4,Fialkow Michael4,Lentz Gretchen4,Hladik Florian124

Affiliation:

1. Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

2. Departments of Medicine

3. Laboratory Medicine

4. Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195

Abstract

ABSTRACT Vaginally applied microbicides hold promise as a strategy to prevent sexual HIV transmission. Several nonspecific microbicides, including the polyanion cellulose sulfate, have been evaluated in large-scale clinical trials but have failed to show significant efficacy. These findings have prompted a renewed search for preclinical testing systems that can predict negative outcomes of microbicide trials. Moreover, the pipeline of potential topical microbicides has been expanded to include antiretroviral agents, such as reverse transcriptase, fusion, and integrase inhibitors. Using a novel ex vivo model of vaginal HIV-1 infection, we compared the prophylactic potentials of two forms of the fusion inhibitor T-20, the CCR5 antagonist TAK-778, the integrase inhibitor 118-D-24, and cellulose sulfate (Ushercell). The T-20 peptide with free N- and C-terminal amino acids was the most efficacious compound, causing significantly greater inhibition of viral genomic integration in intraepithelial vaginal leukocytes, measured by an optimized real-time PCR assay, than the more water-soluble N-acetylated T-20 peptide (Fuzeon) (50% inhibitory concentration [IC 50 ], 0.153 μM versus 51.2 μM [0.687 ng/ml versus 230 ng/ml]; P < 0.0001). In contrast, no significant difference in IC 50 s was noted in peripheral blood cells (IC 50 , 13.58 μM versus 7.57 μM [61 ng/ml versus 34 ng/ml]; P = 0.0614). Cellulose sulfate was the least effective of all the compounds tested (IC 50 , 1.8 μg/ml). These results highlight the merit of our model for screening the mucosal efficacies of novel microbicides and their formulations and potentially rank ordering candidates for clinical evaluation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3