Cell cycle control of polyomavirus-induced transformation

Author:

Chen H H1,Fluck M M1

Affiliation:

1. Department of Microbiology, Michigan State University, East Lansing 48824-1101.

Abstract

The cell cycle dependence of polyomavirus transformation was analyzed in infections of nonpermissive Fischer rat (FR3T3) cells released from G0. A 5- to 100-fold (average, ca. 20-fold) difference in relative frequency of transformation was found for cells infected in the early G1 phase of the cell cycle compared with cells infected in G2. Differences in the relative level of early viral gene expression in those two cell populations were equivalent to those obtained for transformation frequencies. The difference in transformation potential was accounted for only in part by a cell cycle control of viral adsorption (2- to 15-fold effect). Furthermore, in cells infected in the early G1 phase, viral gene expression was induced as a big synchronous burst of large transcripts of variable sizes, delayed till the G1 phase of the cell cycle after that in which infection took place. Thus, the results demonstrate that the abortive infection cycle of G0-released FR3T3 cells is cell cycle regulated at least at two steps: adsorption and another early step, nuclear transport, decapsidation, up to or including the transcription of the viral early genes. The cell cycle regulation of these steps results in a similar regulation of the abortive and stable transformation processes, although it is more pronounced for the latter. A model implicating c-fos and c-jun is proposed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3