Affiliation:
1. Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, The Netherlands. E.P.W.KETS@ATO.DLO.NL.
Abstract
The aim of this study was to identify the compatible solutes accumulated by Pseudomonas putida S12 subjected to osmotic stress. In response to reduced water activity, P. putida S12 accumulated Nalpha-acetylglutaminylglutamine amide (NAGGN) simultaneously with a novel compatible solute identified as mannitol (using 13C- and 1H-nuclear magnetic resonance, liquid chromatography-mass spectroscopy and high-performance liquid chromatography methods) to maximum concentrations of 74 and 258 micromol g (dry weight) of cells(-1), respectively. The intracellular amounts of each solute varied with both the type and amount of osmolyte applied to induce osmotic stress in the medium. Both solutes were synthesized de novo. Addition of betaine to the medium resulted in accumulation of this compound and depletion of both NAGGN and mannitol. Mannitol and NAGGN were accumulated when sucrose instead of salts was used to reduce the medium water activity. Furthermore, both compatible solutes were accumulated when glucose was substituted by other carbon sources. However, the intracellular quantities of mannitol decreased when fructose, succinate, or lactate were applied as a carbon source. Mannitol was also raised to high intracellular concentrations by other salt-stressed Pseudomonas putida strains. This is the first study demonstrating a principal role for the de novo-synthesized polyol mannitol in osmoadaptation of a heterotrophic eubacterium.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献