Affiliation:
1. Department of Bacteriology, University of Wisconsin-Madison, 53706-1567, USA.
Abstract
The cobB function of Salmonella typhimurium LT2 was defined in vivo as an alternative activity for the nicotinic acid mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme (CobT), which is involved in the assembly of the nucleotide loop of cobalamin in this bacterium (J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante-Semerena, J. Bacteriol. 176:3568-3575, 1994). In this paper we document that, independent of their inability to substitute for CobT function, cobB mutants are unable to use propionate as a carbon and energy source. A plasmid carrying only a wild-type copy of cobB complemented the cobalamin biosynthesis and propionate catabolism phenotypes of cobB mutants, indicating that a lack of CobB was responsible for both phenotypes. We demonstrate the existence of a function encoded by the 1,2-propanediol utilization (pdu) operon, which when induced by 1,2-propanediol compensated for the lack of CobB during propionate catabolism but failed to compensate for CobT in the assembly of the nucleotide loop of cobalamin in a cobB cobT double mutant.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献