Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene

Author:

Bhatia P K1,Verhage R A1,Brouwer J1,Friedberg E C1

Affiliation:

1. Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Abstract

Cockayne syndrome patients exhibit severe developmental and neurological abnormalities. Cells derived from these patients are sensitive to killing by UV radiation and do not support the rapid repair of the transcribed strand of transcriptionally active genes observed in cells from normal individuals. We report the cloning of the Saccharomyces cerevisiae homolog of the Cockayne syndrome A (CSA) gene, which we designate as RAD28. A rad28 null mutant does not manifest increased sensitivity to killing by UV or gamma radiation or to methyl methanesulfonate. Additionally, the rate of repair of the transcribed and nontranscribed strands of the yeast RPB2 gene in the rad28 mutant is identical to that observed in wild-type cells following exposure to UV light. As previously shown for rad7 rad26 and rad16 rad26 double mutants, the rad28 null mutant shows slightly enhanced sensitivity to UV light in the presence of mutations in the RAD7 or RAD16 gene. Both rad28 and rad26 null mutants are hypermutable following exposure to UV light.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3