Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli

Author:

Ehlert K1,Höltje J V1

Affiliation:

1. Abteilung Biology, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany.

Abstract

Inhibition of phospholipid synthesis in Escherichia coli by either cerulenin treatment or glycerol starvation of a glycerol-auxotrophic mutant resulted in a concomitant block of murein synthesis. The intracellular pool of cytoplasmic and lipid-linked murein precursors was not affected by an inhibition of phospholipid synthesis, nor was the activity of the penicillin-binding proteins. In addition, a decrease in the activity of the two lipoprotein murein hydrolases, the lytic transglycosylases A and B, could not be demonstrated. The indirect inhibition of murein synthesis by cerulenin resulted in a 68% decrease of trimeric muropeptide structures, proposed to represent the attachment points of newly added murein. Importantly, inhibition of phospholipid synthesis also inhibited O-antigen synthesis with a sensitivity and kinetics similar to those of murein synthesis. It is concluded that the step common for murein and O-antigen synthesis, the translocation of the respective bactoprenolphosphate-linked precursor molecules, is affected by an inhibition of phospholipid synthesis. Consistent with this assumption, it was shown that murein synthesis no longer depends on ongoing phospholipid synthesis in ether-permeabilized cells. We propose that the assembly of a murein-synthesizing machinery, a multienzyme complex consisting of murein hydrolases and synthases, at specific sites of the membrane, where integral membrane proteins such as RodA and FtsW facilitate the translocation of the lipid-linked murein precursors to the periplasm, depends on ongoing phospholipid synthesis. This would explain the well-known phenomenon that both murein synthesis and antibiotic-induced autolysis depend on phospholipid synthesis and thereby indirectly on the stringent control.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference51 articles.

1. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant;Bell R. M.;J. Bacteriol.,1974

2. The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis;Bolla J.;EMBO J.,1988

3. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo;Buttke T. M.;Biochemistry,1978

4. Cashel M. and K. E. Rudd. 1987. The stringent response p. 1410-1438. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

5. Lipid involvement in protein translocation in Escherichia coli;de Vrije G. J.;Mol. Microbiol.,1990

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3