Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress

Author:

Malin G1,Lapidot A1

Affiliation:

1. Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.

Abstract

The metabolic responses of a number of Streptomyces strains to osmotic and heat stress were studied by 13C nuclear magnetic resonance spectroscopy. During cell growth in a chemically defined medium supplemented with 0.5 M NaCl, tetrahydropyrimidine derivatives (THPs), 2-methyl-4-carboxy-5-hydroxy-3,4,5,6-tetrahydropyrimidine [THP(A)] and, to a lesser extent, 2-methyl-4-carboxy-3,4,5,6-tetrahydropyrimidine [THP(B)], were found to accumulate in a significant amount in all bacteria examined. In addition, when the growth temperature was shifted from 30 to 39 degrees C, the intracellular concentration of THP(A) increased significantly. Moreover, exogenously provided THP(A) or THP(B) or both reversed inhibition of Escherichia coli growth caused by osmotic stress and increased temperature. Although the ability of Streptomyces strains to tolerate high concentrations of NaCl is well known, very little is known about the osmoregulatory strategy in Streptomyces strains. Similarly, the mechanism by which compatible solutes accumulate in a variety of microorganisms is not understood. Our findings suggest the possibility of a novel mechanism of protection of DNA against salt and heat stresses involving the THPs.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3