Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

Author:

Juttukonda Lillian J.1,Chazin Walter J.2,Skaar Eric P.13

Affiliation:

1. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

2. Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA

3. Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA

Abstract

ABSTRACT During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn 2+ , Zn) and manganese (Mn 2+ , Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii , a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii . Finally, evidence is provided that this system combats calprotectin in vivo , as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress. IMPORTANCE Acinetobacter baumannii is a bacterium that causes bloodstream, wound, urinary tract, and pneumonia infections, with a high disease burden in intensive care units. Treatment of A. baumannii infection is complicated by resistance to most antibiotics in use today, and resistance to last-resort therapies has become commonplace. New treatments for A. baumannii infection are desperately needed, but our current understanding of the bacterial factors required to cause infection is limited. We previously found that the abundant innate immune protein calprotectin inhibits the growth of A. baumannii by withholding essential metals . Despite this, A. baumannii is still able to infect wild-type mice, which produce calprotectin during infection. Here, we identify factors employed by A. baumannii during infection to overcome calprotectin-mediated metal sequestration. Moreover, we expose a connection between metal starvation and metabolism that may be a “chink in the armor” of A. baumannii and lead to new treatment options.

Funder

HHS | National Institutes of Health

U.S. Department of Veterans Affairs

American Heart Association

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3