Ubiquitination of acetyltransferase Gcn5 contributes to fungal virulence in Fusarium graminearum

Author:

Chen Ahai1ORCID,Zhou Yifan1,Ren Yiyi1,Liu Chao1,Han Xingmin1,Wang Jing1,Ma Zhonghua1,Chen Yun1ORCID

Affiliation:

1. State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University , Hangzhou, China

Abstract

ABSTRACT The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum . Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δ ubp14 , protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum , the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

MOST | NSFC | NSFC-Zhejiang Joint Fund | 浙江省科学技术厅 | Natural Science Foundation of Zhejiang Province

China Agricultural Research System

MOE | Fundamental Research Funds for the Central Universities

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3