Inhibition of host 5-lipoxygenase reduces overexuberant inflammatory responses and mortality associated with Cryptococcus meningoencephalitis

Author:

Castro-Lopez Natalia12,Campuzano Althea3ORCID,Mdalel Elysa23,Vanegas Difernando23,Chaturvedi Ashok23,Nguyen Phung4,Pulse Mark4,Cardona Astrid E.23,Wormley Floyd L.12ORCID

Affiliation:

1. Department of Biology, Texas Christian University, Fort Worth, Texas, USA

2. South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA

3. Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, Texas, USA

4. Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas, USA

Abstract

ABSTRACT Cryptococcosis, caused by fungi of the genus Cryptococcus , manifests in a broad range of clinical presentations, including severe pneumonia and disease of the central nervous system (CNS) and other tissues (bone and skin). Immune deficiency or development of overexuberant inflammatory responses can result in increased susceptibility or host damage, respectively, during fungal encounters. Leukotrienes help regulate inflammatory responses against fungal infections. Nevertheless, studies showed that Cryptococcus exploits host 5-lipoxygenase (5-LO), an enzyme central to the metabolism of arachidonic acid into leukotrienes, to facilitate transmigration across the brain–blood barrier. To investigate the impact of host 5-LO on the development of protective host immune responses and mortality during cryptococcosis, wild-type (C57BL/6) and 5-lipoxygenase-deficient (5-LO −/− ) mice were given experimental pulmonary and systemic Cryptococcus sp., infections. Our results showed that 5-LO −/− mice exhibited reduced pathology and better disease outcomes (i.e., no mortality or signs associated with cryptococcal meningoencephalitis) following pulmonary infection with C. deneoformans, despite having detectable yeast in the brain tissues. In contrast, C57BL/6 mice exhibited classical signs associated with cryptococcal meningoencephalitis. Additionally, brain tissues of 5-LO −/− mice exhibited lower levels of cytokines (CCL2 and CCL3) clinically associated with Cryptococcus -related immune reconstitution inflammatory syndrome (C-IRIS). In a systemic mouse model of cryptococcosis, 5-LO −/− mice and those treated with a Federal Drug Administration (FDA)-approved 5-LO synthesis inhibitor, zileuton, displayed significantly reduced mortality compared to C57BL/6 infected mice. These results suggest that therapeutics designed to inhibit host 5-LO signaling could reduce disease pathology and mortality associated with cryptococcal meningoencephalitis. IMPORTANCE Cryptococcosis is a mycosis with worldwide distribution and has a broad range of clinical manifestations, including diseases of the CNS. Globally, there is an estimated 179,000 cases of cryptococcal meningitis, resulting in approximately 112,000 fatalities per annum and 19% of AIDS-related deaths. Understanding how host immune responses are modulated during cryptococcosis is central to mitigating the morbidity and mortality associated with cryptococcosis. Leukotrienes (LTs) have been shown to modulate inflammatory responses during infection. In this study, we show that mice deficient in 5-lipoxygenase (5-LO), an enzyme central to the metabolism of arachidonic acid into leukotrienes, exhibit reduced pathology, disease, and neurological signs associated with cryptococcal meningitis. Additionally, mice given an experimental cryptococcal infection and subsequently treated with an FDA-approved 5-LO synthesis inhibitor exhibited significantly reduced mortality rates. These results suggest that therapeutics designed to inhibit host 5-LO activity could significantly reduce pathology and mortality rates associated with cryptococcal meningitis.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3