Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6

Author:

Haigler B E1,Spain J C1

Affiliation:

1. Air Force Engineering and Services Center, Tyndall Air Force Base, Florida 32403.

Abstract

Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference37 articles.

1. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols;Bartels I.;Appl. Environ. Microbiol.,1984

2. P-Methylmuconolactone, a key intermediate in the dissimilation of methylaromatic compounds by a modified 3-oxoadipate pathway evolved in nocardioform actinomycetes;Bruce N. C.;FEMS Microbiol. Lett.,1988

3. .Chapman P. J. 1988. Constructing microbial strains for degradation of halogenated aromatic hydrocarbons p. 81-95. In G. S. Omenn (ed.) Environmental biotechnology. Reducing risks from environmental chemicals through biotechnology. Proceedings of a conference on reducing risks from environmental chemicals through biotechnology. Plenum Publishing Corp. New York.

4. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida;Chapman P. J.;J. Bacteriol.,1976

5. Microbial degradation of 1,3-dichlorobenzene;de Bont J. A. M.;Appl. Environ. Microbiol.,1986

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3