Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

Author:

Kohring G W1,Rogers J E1,Wiegel J1

Affiliation:

1. Center for Biological Resource Recovery, University of Georgia, Athens 30602.

Abstract

Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3