Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression.

Author:

Thukral S K,Eisen A,Young E T

Abstract

ADR1 is a transcription factor from Saccharomyces cerevisiae that regulates ADH2 expression through a 22-bp palindromic sequence (UAS1). Size fractionation studies revealed that full-length ADR1 and a truncated ADR1 protein containing the first 229 amino acids, which has the complete DNA-binding domain, ADR1:17-229, exist as monomers in solution. However, two complexes were formed with target DNA-binding sites. UV-cross-linking studies suggested that these two complexes represent one and two molecules of ADR1 bound to DNA. Studies of ADR1 complexes formed with wild-type UAS1, asymmetrically altered UAS1, and one half of UAS1 showed that ADR1 can bind to one half of UAS1 and gives rise to a complex containing one molecule of ADR1. Dimethyl sulfate interference studies were consistent with this interpretation and in addition indicated that purine contact sites in each half of UAS1 were identical. Increasing the distance between the two halves of UAS1 had at most a minor effect of the thermodynamics of formation of the two complexes. These data are more consistent with ADR1 binding as two independent monomers, one to each half of UAS1. However, binding of two ADR1 monomers at UAS1 is apparently essential for transactivation in vivo. Further, we have identified a stretch of 18 amino acid residues amino terminal to the zinc two-finger domains of ADR1 which is essential for DNA-binding activity. Single amino acid substitutions of residues in this region resulted in severely reduced DNA-binding activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3